
Probabilistic Intelligent Agent Approach to
Design of Alerting Systems

Lee Winder
Jim Kuchar

International Center for Air Transportation

FAA/NASA Joint University Program
Ohio University
June 13, 2002

Alerting Systems

Alerting System: Automation that monitors another
system and issues alert guidance to human operators
when necessary to avoid some category of incident.

Importance of World Dynamics to an Alerting Decision

No alert issued

A

B

Alert issued

N
or

m
al

 c
as

e
Ab

no
rm

al
 c

as
e

A good world dynamic model is critical in choosing the alert action

A

Bx = fabnormal(x, unoevade) x = fabnormal(x, uevade)

x = fnormal(x, unoevade)

A

Bx = fnormal(x, uevade)

A

B

Generalized Alerting System as Intelligent Agent*

(*Diagram adapted from Kaelbling, et. al.)

Alerting
Policy

World State
Estimation

xest(t)

u(t)

World

Alerting Systemy(t)

Humans, vehicles,
environment…

x(t)

Observations Alert action

Two phases of alerting: world state update and alert action selection

World Model Class Parameter: Car Encounters

Class p1 : Failure of lane-keeping by A or B

Class p2 : Normal lane-keeping by A and B

z = ffail(d, d)

z = fnorm(d, d)

ffail(d, d), if p = p1

z = f(d, d, p) =

fnorm(d, d), if p = p2

p
p1 p2

f(p)

xest = { f(d, d, p) }

A B

A
B

Class Parameter Distribution Updating

Class p1 Class p2

time, t1

t2

t3

f(p)

p

p

p

p1 p2

p1 p2

p1 p2

A B A
B

A B

A
B

A B

Bayes Updating of Class Parameter Distribution

Assuming Markov system Require knowledge of previous state only
Update recursively

f(zk | zk-1, uk-1, pi) fk-1(pi)
fk(pi) = Probability of pi at time step k

Σ f(zk | zk-1, uk-1 ,pj) fk-1(pj)

• Recursive solution also exists if the observation is an uncertain y,
from fobs(y | z), rather than z directly

j = 1

n

Class-conditional transition likelihood Current ith class probability

Testbed System with Distinct Dynamic Classes

• Defined simple testbed system and alerting logic to
– Implement and demonstrate Bayesian updating of class

parameter distribution
– Link choice of alert actions to class parameter distribution

• Testbed: Planar 2 “vehicle” encounter scenario

• Class parameter: 3 future trajectory classes
– Normal, fo(pnormal) = .9
– Vehicle A failed, fo(pAfail) = .05
– Vehicle B failed, fo(pBfail) = .05

• f(zk | zk-1, uk-1, pi) is from a defined Markov process

fo(p)

Testbed System with Classes

Normal Class: Vehicles approach from sides, and mean paths ramp apart so they
tend to pass safely. Vehicles are responsive to maneuver commands.

(Collision if R < Rcollision)

y

1st order Markov 1st order Markov1st order Markov + ramp

x

A

B

•

•

R Separation at y axis

Testbed System with Classes

A Failure Class: Vehicle A disregards passing procedure and
maneuver commands (if issued)

xA

y

R

•

Passing zone

•
B

Testbed System with Classes

B Failure Class: Vehicle B disregards passing procedure and
maneuver commands (if issued)

y

x

A

B

R

•

Passing zone

•

Simulated System Trajectory (Class pnormal)

x

y

Vehicle A

Vehicle B

Passing procedure mean
crossing point for 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

-20 -10 0 10 20

t = 0 t = 0t = 20

R, passing separation
(Rcollision = 5)

Simulated System Trajectory (Class pnormal)

x

y

Vehicle A

Vehicle B

Passing procedure mean
crossing point for 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

-20 -10 0 10 20

t = 0 t = 0t = 20

R, passing separation

Bayes-Updated Class Distribution Trace
(Class pnormal)

Time

f(p
i)

Normal, pnormal

A Failure, pAfail B Failure, pBfail

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

Time

f(p
i)

Normal, pnormal

A Failure, pAfail

B Failure, pBfail

Bayes-Updated Class Distribution Trace
(Class pBfail)

Discrete Action Sequence, U

• U is a sequence of future alert actions.

U = { u(1), u(2), u(3), … }

u(•) { u1, u2,… un }

t
u1

u3

u2

“U”

∆t

Al
er

t a
ct

io
ns

…

(e.g. A climb, B descend, do nothing…)

Limiting Scope of Action Sequence, U

• Difficult to consider all sequence options
– For testbed system, considered a finite set of control sequences:

Those of constant “u”.

• Reduced U set:

Al
er

t a
ct

io
ns

t
u1

u3

u2

U1

∆t

…

t
u1

u3

u2

U3 …

t
u1

u3

u2

U2

… …

(do nothing)

(vehicle A climb)

(vehicle B descend)

Testbed System Action Sequence
(Evasion Maneuver) Set

Evasion maneuver: Apply a constant vertical velocity bias in place of
nominal behavior.

Policy derived under assumption that future u(t) = constant

y

x

A

B

R

Evasion velocity bias •

•
Alert starts

No alert
U = u(t) = Bias on A

Bias on B

Calculating Expected Utilities for Testbed Policy

• For testbed system, defined
– Utility of any collision = 0
– Utilities of having no collision with each alert option, Ui:
vnoalert, vAbias, vBbias and said vnoalert > vAbias and vAbias = vBbias

• Expected utilities for each U:

E(Utility of U1) = vnoalert [P(no collision | U1)] = vnoalert [1 – P(collision | U1, x)]

E(Utility of U2) = vAbias [P(no collision | U2)] = vAbias [1 – P(collision | U2, x)]

E(Utility of U3) = vBbias [P(no collision | U3)] = vBbias [1 – P(collision | U3, x)]

• Logic: Choose Ui to maximize expected value

Collision Probabilities from Parameter Distribution

Compute probability of a collision (C) for each U

P(collision | U1, xest) P(C | U1, pnormal, z) P(C | U1, pAfail, z) P(C | U1, pBfail, z) f(pnormal)

P(collision | U2, xest) = P(C | U2, pnormal, z) P(C | U2, pAfail, z) P(C | U2, pBfail, z) f(pAfail)

P(collision | U3, xest) P(C | U3, pnormal, z) P(C | U3, pAfail, z) P(C | U3, pBfail, z) f(pBfail)

Class-conditional collision probabilities

Class distribution

Simulated System Trajectory (Class pBfail)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-20 -10 0 10 20
x

y

Vehicle A

Vehicle B

Passing procedure mean
crossing point for A

A evasion commanded

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 10 20 30 40

Time

f(p
i)

Normal, pnormal

A Failure, pAfail

B Failure, pBfail

Bayes-Updated Class Distribution Trace
(Class pBfail)

Collision Probability Trace for Each U

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

Time

P(
C

ol
lis

io
n)

No alert

A Evades

B Evades

Expected Utilities for Each U

No alert

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

Time

E(
U

til
ity

)

B Evades

A Evades

Choose “A Evades” option

E(Utility of Ui) = vUi [1 – P(collision | Ui)]

Summary to Date

• Utility and probability-based framework allowing for
dynamic classes and class distribution updating

• Testbed system with similarities to some difficult alerting
problems
– Multiple vehicles/humans requiring coordination
– Identifiable classes of trajectories
– Dynamic resolution guidance desired

• Initial alerting logic for testbed system

Future Work

• Apply distribution update techniques to more complex
and realistic alerting problems
E.g.
– Car collision avoidance (intersections, lane incursions, run-off-road)
– Aircraft collision avoidance (En route, parallel approaches, runway

incursions)

• Consider more sophisticated alerting policies
– More complete sets of alert sequences, U
– Policies that consider the value of anticipated information

• Dynamic Decision Networks

• Compare model with existing alerting systems and
concepts, identify differences and benefits, refine
model

The End

Automatic Alerting Systems

• Existing alerting systems (in aviation) target
– Mid-air collisions
– Controlled flight into terrain
– Collisions due to parallel approach blunders
– Wind shear accidents
– Many other hazards

• Trend toward more alerting systems and more complex
algorithms
– Alert to avoid future hazard
– Availability of computing power and state information
– Desire to increase or maintain safety levels

Design of Alerting Logics
• Most logics evolve from simple forms

– Start with a simple baseline alert-triggering logic
– Change incrementally so system behaves as desired in test scenarios
– Field the system and adjust later to minimize user complaints

e.g. TCAS: 10 years from concept to fielding
10 years of adjustment in field (to version 7.0)

• Would rather logic follow directly from explicit assumptions and
requirements

– Reduce design costs, bring logic closer to “optimal”?
– Yang thesis

Performance
requirements

Dynamic
assumptions

Human
designer

Alerting
logic

Performance
requirements

Dynamic
assumptions

Human
designer

Alerting
logic

(Direct
Mapping)

Objectives

• Develop a novel design methodology applicable over a range of
difficult alerting problems
– Multiple humans/alerting subsystems to be coordinated
– Dynamic resolution guidance desired
– Identifiable distinct dynamic classes in the observed system

(e.g. normal and failure)
• Incorporate knowledge of structure in the nominal system

– Procedures, rules of the road…

• Show agreement with and any advantages over evolved solutions
to given problems (which presumably exhibit approximate
“correct” alerting behavior)
– TCAS
– Proposed parallel approach alerting logics

• Independent approaches
• Dependent approaches

– Others…

World State (x) Meaning

World State: Information about the world sufficient to know
the future state or state distribution. (Markov state)

•
x = { position, velocity }

Short term prediction

•
x = { position, velocity, road parameters, driver status… }

Some state variables may not be directly observable (e.g. driver status)

Need more information to extend prediction horizon

World State Estimate (xest) is a Probability Density
Function over x

Illustration: Spring-mass system with uncertain parameter

• x = { z, z, p } xest = { z, z, p } ? No, xest = { f(z, z, p) }

• Assume we know the prior distributions at t = 0:

• Est. for for t>0: xest(t) = { ft(z, z, p) } where ft(z, z, p) is the posterior distribution
of at time t

= { τ, f0(z, z, p) } where τ is trajectory { z(t), u(t) } for all t<0

p

f0(z, z, p)

z …

z

u(t)

z = -pz + u
control input

Alerting Policy Design

• At each time step, choose the best action for the current
world state estimate

• Options

u
Planning
based on

world state
estimate

xest

Class
hypothesis

testing

Planning for
chosen

hypothesis

xest x u

Chosen method:

Policy for Testbed System: Simple Utility-based
Approach

• Employ Maximum Expected Utility principle on a set of
possible action sequences, { U1, U2, U2… }
– Update world state estimate
– Determine expected utility of different U’s from current state
– Choose the action with the highest expected utility

max[Σ P(outcome j | Ui) Utility(outcome j)]

• Resembles resolution strategy of some logics (TCAS)

• Doesn’t account for value of anticipated observations

i j

E[Utility of Ui]

General State Distribution Updating for Markovian
System

For world state x, observation y, control input u

f(xk) = Σ P(xk | xk-1, uk-1) f(xk-1)

f(xk) = α P(yk | xk) f(xk-1)

• f(xk) is the updated state distribution

• α is a normalization constant

(From Russell & Norvig, AI, A Modern Approach)

X

Typical “Baseline Logics”

• Alert to avert a hazard (AILS, TCAS?)

• Alert when system fails to conform (PRM)

• Alert before evasion options are lost (Carpenter, Tomlin)

system state

non-alert trajectory

hazard

escape trajectory

criteria for completed escape

hazard

Conformance boundary

hazard

“NTZ”

Discretely Distributed World State Parameter:
Aircraft Encounter Classes

Class p1 : A and B lose vertical separation

A

B

A

B

Class p2 : A and B maintain vertical separation

z = ffail(h, h)

z = fnorm(h, h)

ffail(h, h), if p = p1

z = f(h, h, p) =

fnorm(h, h), if p = p2

p
p1 p2

f(p)

x = { f(h, h, p) }

State Parameter Distribution Updating

Class p1 Class p2

time, t1

t2

t3

f(p)

p

p

p

p1 p2

p1 p2

p1 p2

